
Sammen med Chandler Johnson og Alessandra Luzzi underviser jeg nå tredje iterasjon av kurset Analytics for Strategic Management. I løpet av kurset jobber studenter med reelle prosjekter for ordentlige selskaper, og bruker ulike former for maskinlæring (stordata, analytics, AI, hva du vil kalle det) til å løse forretningsproblemer. Her er en (for det meste anonymisert, bortsett fra offentlig eide selskaper) liste med resultatene så langt:
- Et IT-serviceselskap som leverer data og analyser, ønsker å forutsi kundenes bruk av sine elektroniske produkter, for å kunne tilby bedre produkter og skreddersy dem mer til de mest aktive kundene. Resultat: Bedre salgsprediksjoner enn den eksisterende metoden (reduserte feilmodellering med 86%) – men modellen fungerer ikke langt frem i tid. Men den vil bli implementert.
- En bensinstasjonskjede ønsker å beregne churn hos sine forretningskunder, for å finne måter å holde dem på (eller om nødvendig, endre noen av sine tilbud). Resultat: Fant en modell som identifiserer kunder som vil forlate dem, med en treffrate på 50% vil modellen forbedre resultatet med 25m kroner, og det er rom for å øke bruken av modellen utenfor de opprinnelige segmentene.
- En frisørkjede ønsker å forutsi hvilke kunder som vil sette opp en ny avtale når de har klippet seg, for å bygge kundelojalitet. Resultat: Fant en modell som predikerte hvilke frisører som har problemer med å bygge opp en gruppe stamkunder (med omtrent 85% nøyaktighet), har klart å få en bedre forståelse av hva som driver kundelojalitet og dermed hvordan de kan hjelpe frisører med å få flere kunder.
- En stor finansinstitusjon ønsker å finne ansatte som ser etter informasjon om kunder (for eksempel kjendiser), for å styrke personvern og datakonfidensialitet. Resultat: Slet med å få tak i nok og riktige data, men bygget en spesifikasjon av hva slags data som er nødvendig, hva det vil koste, og hva resultatet vil være – og fant at innenfor dette området finnes det svært få modeller, noe som er en mulighet. Og man fant noen lovende startpunkter for å bygge en slik modell. Vanskelig, men viktig område.
- En stor offentlig IT-avdeling ønsker å forutsi hvilke ansatte som sannsynligvis vil forlate selskapet, for bedre å planlegge for rekruttering og kompetansebygging. Resultat: Bygget en prediksjonsmodell og en prosess som reduserer ledetiden for å ansette en ny person fra 9 til 8 måneder (en 10m innsparing) og dermed reduserer behovet for å utsette prosjekter på grunn av kapasitetsmangel, samt forbedre planleggingen av fremtidige kompetansebehov og øke sjansen for å beholde viktige ansatte.
- OSL Gardermoen vil finne ut hvilke flypassasjerer som vil ønske å bruke taxfree-butikken etter at de har landet, for å øke salget (og ikke bry dem som ikke vil kjøpe taxfree). Resultat: Fant at noen variable man trodde ville øke taxfree-andelen ikke gjorde det, lærte mye om hva som gjør forskjell – og at modellen, hvis man klarer å bygge den, vil være mye verdt (en økning i taxfree-bruk på under en prosent vil øke Avinors inntekter med mer enn 100m). Samt at eksperimentering, ikke store prosjekter, er veien å gå videre.
- En mindre bank ønsker å finne ut hvilke av sine yngre kunder som snart trenger et boliglån, for å øke sin markedsandel. Resultat: Bygget en modell som øker sannsynligheten for å identifisere førstegangs boliglånskunder, til en merverdi av 6,9 millioner kroner – samt at bruken av denne modellen introduserer datadrevne beslutninger for organisasjonen.
- Et internasjonalt TV-selskap vil finne ut hvilke kunder som sannsynligvis vil si opp abonnementet sitt innen en bestemt tidsramme, for å bedre skreddersy sitt tilbud og markedsføring. Resultat: Bygget en modell med en kortsiktig beregnet merverdi på 500000 kroner per år, som treffer seks ganger bedre enn tilfeldige utvalg. I løpet av arbeidet har man funnet en rekke aktiviteter som kan øke kundelojaliteten uten store kostnader – og funnet inspirasjon for mer bruk av maskinlæring.
- En leverandør av administrerte datasentre ønsker å forutsi sine kunders energibehov, for å kunne skrive og oppfylle konktrakter om sertifisert grønne datasentertjenester. Resultat: Bygget en modell basert på historiske sensordata for eksisterende kunder, for å forutsi forbruk for en ny kunde, og deretter en modell som inkluderer den nye kunden for å overvåke resultatet og forbedre modellen for alle kundene. En korrekt modell (som implementert) vil forbedre månedlig inntekt med 47% for en ny klient og redusere sjansen for kontraktsterminering.
- Ruter (paraplyfirmaet for offentlig transport for Oslo-området) ønsker å bygge en modell for å bedre forutsi trengsel på busser, for å, vel, unngå trengsel. Resultat: Bygget en modell og et forslag til en tjeneste for å kunne fortelle Ruters kunder om det (sannsynligvis) er ledige seter på bussen eller ikke, går nå til testing.
- Barnevernet ønsker å bygge en modell for å bedre forutsi hvilke familier som mest sannsynlig vil bli godkjent som fosterforeldre, for å kunne prioritere saksbehandling og redusere ventelister. Resultat: Tross mye manglende data klarte man å finne gode indikatorer på godkjente fosterforeldre og har lagt en plan for videreutvikling av modellen etterhvert som man får bedre data. Området er lovende, siden behovet for fosterforeldre er stort og selv en liten forbedring vil hjelpe.
- Et strømproduksjonsselskap vil bygge en modell for å bedre forutsi strømforbruket i deres marked for å kunne planlegge produksjonsprosessen bedre. Resultat: Testet mange modeller og har funnet at å forutsi spot-priser er vanskelig, men har klart å finne indikatorer på økt volatilitet, noe som gjør at man kan produsere noe mer presist. Kortsiktig effekt av en liten modell er 100-200 tusen euro per år for hver produksjonsenhet, et tall som forventes å øke siden volatiliteten i markedet vil øke fremover.
Alt i alt er vi svært fornøyd – vi har klart å øke verdien, samlet sett, for disse selskapene adskillig mer enn kurset koster (I hvert fall 10-gangen, konservativt anslått). Flere av deltakerne har fått nye stillinger og flere av dem har bestemt seg for at data science er en retning de skal fortsette å utvikle seg i, og ønsket seg flere slike «tekniske» kurs. Og gitt at vi også har produsert en masse kunnskap og generelt økt deltakernes evne til å bygge bro mellom analytikere og forretningsfolk, tror jeg vi kan erklære dette prosjektet for en suksess…
Og her er (de fleste) av denne gjengen:
