Syntes jeg dro kjensel på fotografiet – og jammen var det ikke Odd Erik Gundersen (som jeg sitter i styret i SmartHelp sammen med) som ble intervjuet og har skrevet en glimrende (og tilgjengelig) kronikk i Morgenbladet om diskusjonen om forskningskvalitet. Det er et stendig problem innen forskning (også innen informatikk) at forskningsresultater ikke lar seg replikere.
Innenfor kunstig intelligens (eller, vel, maskinlæring som jeg regner med at det er snakk om her) er dette ekstra viktig fordi utviklingen av maskinlæringsalgoritmer i motsetning til vanlig vitenskapelig metode er teoriløs – man har masse data, kjører en søkealgoritme over mange modeller og modellvarianter, og så ender man opp med et eller annet resultat, gjerne uttrykket ved en confusion matrix eller en validation curve (også kalt learning curve).
Ofte finner man at når folk snakker om at de har en modell som er «94% nøyaktig» så snakker de om nøyaktigheten på treningsdataene (der modellen er utviklet) og ikke på testdataene (som er de dataene man holder til side for å se om modellen, utviklet på treningsdataene, er nøyaktig.) Dermed får man modeller som har svært høy nøyaktighet (ikke noe problem å komme til 100% hvis man bare er villig til å ta med nok variable) men som brukbare til noe som helst.
Og det er et problem ikke bare i maskinlæring, men i all forskning. Det er bare det at i maskinlæring finnes dataene og programmene lett tilgjengelige, problemet er synlig, og det er sjelden noen grunn til å skjule det.
Bortsett fra at noen trenger å publisere noe, heller enn å bygge en god modell.